perm filename PALIN6.OUT[S1,ALS] blob sn#483575 filedate 1979-10-24 generic text, type T, neo UTF8
  PALINDROME FORMATION TESTED TO A MAXIMUM OF 100 DIGITS
							OCT. 24 1979
DATA FOR 3-DIGIT DECIMAL NUMBERS
   WHICH CAN BE GROUPED INTO  180 CLASSES

INTRANSIGENT CLASSES DEFINED BY REVERSED DIGIT ADDITIONS, WITHOUT CARRIES

    SUM1 MID#      SUM1 MID#      SUM1 MID#  
       7    9        15    8        17    7  


    23 MAX ADDS FOR    177 PALINDROME CLASSES, WITH     3 INTRANSIGENT CLASSES

PALINDROMES GROUPED AS TO THEIR ADD DEPTHS

      ADDS  CLASSES   ADDS  CLASSES   ADDS  CLASSES   ADDS  CLASSES
         0    20         1    41         2    53         3    23
         4    18         5     5         6     4         7     3
         8     2        10     1        11     1        14     1
        15     1        17     2        22     1        23     1


DATA FOR 4-DIGIT DECIMAL NUMBERS
   WHICH CAN BE GROUPED INTO  342 CLASSES

INTRANSIGENT CLASSES DEFINED BY REVERSED DIGIT ADDITIONS, WITHOUT CARRIES
   * MEANS,- ONE NUMBER IN THIS CLASS IS AN INITIAL PALINDROME

    SUM1 SUM2      SUM1 SUM2      SUM1 SUM2  
       6   13         8   13         8   18 *
      13    7        13   16        16    5  
      16   14 *      17    7        17    8  
      17   16        17   17  

    21 MAX ADDS FOR    331 PALINDROME CLASSES, WITH    11 INTRANSIGENT CLASSES

PALINDROMES GROUPED AS TO THEIR ADD DEPTHS
    0-ADD GROUP ALSO INCLUDES INDIVIDUAL PALINDROMES INDICATED BY * ABOVE

      ADDS  CLASSES   ADDS  CLASSES   ADDS  CLASSES   ADDS  CLASSES
         0     4         1    91         2    88         3    31
         4    40         5    17         6    10         7    12
         8     8         9     2        10     2        11     4
        12     4        13     5        15     5        16     2
        17     1        18     1        20     3        21     1


DATA FOR 5-DIGIT DECIMAL NUMBERS
   WHICH CAN BE GROUPED INTO 3420 CLASSES

INTRANSIGENT CLASSES DEFINED BY REVERSED DIGIT ADDITIONS, WITHOUT CARRIES
   * MEANS,- ONE NUMBER IN THIS CLASS IS AN INITIAL PALINDROME

    SUM1 SUM2 MID#      SUM1 SUM2 MID#      SUM1 SUM2 MID#  
       1   16    1         2    2    8 *       3   12    3  
       3   16    2         3   18    7         4    3    9  
       4    4    8 *       4    5    5         4    5    6  
       4    6    5 *       4    6    6 *       4    6    9 *
       4    8    5 *       4    8    7 *       4    8    8 *
       4    8    9 *       4   11    3         4   11    7  
       4   12    3 *       4   14    3 *       4   18    7 *
       4   18    8 *       5   12    6         5   17    1  
       6    1    7         6    3    7         6    6    9 *
       6    8    5 *       6    8    7 *       6    8    9 *
       6   13    9         6   18    4 *       7    4    7  
       7   12    5         7   13    0         7   17    0  
       7   17    5         8    7    5         8    7    8  
       8    7    9         8    8    7 *       8    9    6  
       8   11    0         8   11    2         8   11    7  
       8   12    0 *       8   12    1 *       8   12    3 *
       8   12    5 *       8   12    9 *       8   13    0  
       8   13    1         8   13    2         8   13    3  
       8   13    8         8   14    2 *       8   14    5 *
       8   15    5         8   15    7         8   16    2 *
       8   16    5 *       8   16    6 *       8   16    8 *
       8   17    0         8   17    4         8   17    5  
       8   17    6         8   17    7         8   17    8  
       8   18    3 *       8   18    7 *       9    2    7  
       9    3    5         9    3    6         9    4    7  
       9    6    6         9    8    7         9   10    8  
       9   11    8         9   13    6         9   16    4  
       9   17    5         9   17    7         9   18    0  
       9   18    9        10    6    9 *      10   15    9  
      11    5    3        11    5    4        11   14    3  
      11   14    4        11   18    4        11   18    8  
      12    2    9 *      12    3    4        12    4    8 *
      12    5    9        12    7    4        12    7    9  
      12    8    0 *      12    8    3 *      12    8    4 *
      12    8    8 *      12    9    3        12   11    9  
      12   12    4 *      12   13    8        12   14    9 *
      12   16    4 *      12   16    9 *      12   17    0  
      12   17    3        12   17    4        12   17    8  
      13    2    4        13    4    4        13    6    0  
      13    7    9        13   11    4        13   13    4  
      13   15    0        13   16    9        14    6    5 *
      14    7    5        14    9    4        14   15    5  
      14   16    5 *      14   18    2 *      15    5    1  
      15    5    6        15    6    1        15    8    2  
      15    8    4        15    8    6        15   14    1  
      15   14    6        15   15    1        15   17    2  
      15   17    4        15   17    6        15   18    2  
      15   18    4        15   18    6        16    4    9 *
      16    5    3        16    5    5        16    6    0 *
      16    6    6 *      16    6    8 *      16    7    3  
      16    8    4 *      16   13    9        16   14    3 *
      16   14    5 *      16   15    0        16   15    6  
      16   15    8        16   16    3 *      16   17    4  
      16   18    1 *      17    2    1        17    2    5  
      17    3    2        17    3    4        17    3    5  
      17    3    6        17    4    0        17    4    1  
      17    4    3        17    4    6        17    4    7  
      17    4    8        17    5    0        17    5    1  
      17    5    9        17    6    0        17    6    1  
      17    6    2        17    6    3        17    6    5  
      17    6    6        17    6    7        17    7    2  
      17    7    7        17    8    2        17    8    4  
      17    8    5        17    8    6        17    9    1  
      17    9    2        17   11    1        17   11    5  
      17   12    2        17   12    4        17   12    5  
      17   12    6        17   13    0        17   13    1  
      17   13    3        17   13    6        17   13    7  
      17   13    8        17   14    0        17   14    1  
      17   14    9        17   15    0        17   15    1  
      17   15    2        17   15    3        17   15    5  
      17   15    6        17   15    7        17   16    2  
      17   16    7        17   17    2        17   17    4  
      17   17    5        17   17    6        17   18    0  
      17   18    3        17   18    5        17   18    6  
      17   18    8        18    1    3        18    1    7  
      18    4    2 *      18    5    4        18    7    0  
      18    7    2        18    7    3        18    7    5  
      18    7    9        18    8    4 *      18    8    5 *
      18    9    4        18   10    3 *      18   10    7 *
      18   13    2        18   14    4 *      18   16    0 *
      18   16    2 *      18   16    3 *      18   16    5 *
      18   16    9 *      18   17    4        18   17    5  


    55 MAX ADDS FOR   3174 PALINDROME CLASSES, WITH   246 INTRANSIGENT CLASSES

PALINDROMES GROUPED AS TO THEIR ADD DEPTHS
    0-ADD GROUP ALSO INCLUDES INDIVIDUAL PALINDROMES INDICATED BY * ABOVE

      ADDS  CLASSES   ADDS  CLASSES   ADDS  CLASSES   ADDS  CLASSES
         0    40         1   447         2   752         3   448
         4   407         5   211         6   180         7   108
         8   101         9    75        10    72        11    61
        12    49        13    36        14    26        15    24
        16    14        17    11        18    13        19     9
        20    13        21     7        22     3        23     6
        24     8        25     5        26     4        27     4
        28     5        29     7        30     5        31     3
        32     1        33     2        37     2        38     5
        39     2        40     1        47     2        52     2
        53     1        54     1        55     1

DATA FOR 6-DIGIT DECIMAL NUMBERS
   WHICH CAN BE GROUPED INTO 6498 CLASSES

INTRANSIGENT CLASSES DEFINED BY REVERSED DIGIT ADDITIONS, WITHOUT CARRIES
   * MEANS,- ONE NUMBER IN THIS CLASS IS AN INITIAL PALINDROME

    SUM1 SUM2 SUM3      SUM1 SUM2 SUM3      SUM1 SUM2 SUM3  
       1    1   18         1    3   15         1    3   16  
       1    5   18         1    7   15         1    8   17  
       1    8   18         1   13    5         1   13   17  
       1   13   18         1   14    7         1   15    7  
       1   15   13         1   15   16         1   15   17  
       1   16   16         1   17   14         1   18    2  
       1   18    4         1   18    5         1   18    9  
       1   18   12         2    2   16 *       2    2   17  
       2    2   18 *       2    3   17         2    5   18  
       2    7   11         2    7   13         2   11   16  
       2   11   17         2   15    8         2   15   10  
       2   15   11         2   17    6         2   17   10  
       2   17   15         2   17   17         2   17   18  
       2   18    6 *       3    2   16         3    4   16  
       3    5   11         3    5   13         3    6   11  
       3    7   11         3    7   16         3    7   18  
       3    8   14         3    8   15         3    8   18  
       3   10   15         3   10   16         3   11    8  
       3   11   14         3   11   15         3   11   16  
       3   13   14         3   15   10         3   16    5  
       3   16    9         3   16   11         3   16   12  
       3   17    0         3   17    6         3   17   17  
       3   18    5         3   18   12         3   18   16  
       3   18   18         4    1   18         4    2   18 *
       4    4   15         4    5   13         4    5   15  
       4    5   17         4    5   18         4    6   10 *
       4    6   12 *       4    6   13         4    6   18 *
       4    7   15         4    8   12 *       4    8   14 *
       4    8   17         4   10    6 *       4   10   18 *
       4   11   16         4   11   17         4   12    6 *
       4   12   18 *       4   13    6         4   14    5  
       4   14    7         4   14   16 *       4   15    3  
       4   15    7         4   16   13         4   16   18 *
       4   17    6         4   18    3         4   18    5  
       4   18    6 *       4   18    8 *       4   18    9  
       4   18   17         5    0   14         5    1   13  
       5    3   14         5    3   16         5    4   18  
       5    7   17         5   10   16         5   10   17  
       5   10   18         5   11    2         5   11    4  
       5   11    7         5   12    4         5   12    8  
       5   12   18         5   14    4         5   14   13  
       5   15    2         5   15    3         5   15   12  
       5   15   16         5   15   18         5   16   13  
       5   16   18         5   18   18         6    0   12 *
       6    0   13         6    2   14 *       6    5   13  
       6    6   18 *       6    8   14 *       6    8   16 *
       6    8   17         6    9   13         6   10    2 *
       6   10   17         6   11    3         6   11    7  
       6   11    8         6   11   18         6   12    2 *
       6   12    4 *       6   12    8 *       6   13    3  
       6   13    6         6   13   18         6   14    1  
       6   14    5         6   14    6 *       6   14   11  
       6   14   12 *       6   14   16 *       6   15    3  
       6   15   12         6   15   13         6   15   17  
       6   16   13         6   16   16 *       6   16   18 *
       6   17    9         6   17   11         6   17   17  
       6   18   10 *       6   18   11         6   18   15  
       7    1   12         7    1   14         7    2   17  
       7    3   10         7    3   12         7    3   14  
       7    3   17         7    5   13         7    7   10  
       7    7   15         7    7   17         7    8   12  
       7   10   18         7   11    2         7   11   13  
       7   12    6         7   12   11         7   13    0  
       7   13    1         7   13    4         7   13    6  
       7   13    9         7   13   13         7   14    0  
       7   14    1         7   14   13         7   15   16  
       7   16    8         7   16   11         7   17    6  
       7   17   11         7   17   14         7   17   15  
       7   17   18         7   18    4         7   18    8  
       7   18   14         7   18   15         8    0   13  
       8    0   17         8    1   10         8    1   14  
       8    1   16         8    2   12 *       8    2   13  
       8    3   12         8    3   16         8    3   17  
       8    4   13         8    4   17         8    5   17  
       8    6   16 *       8    6   18 *       8    7   12  
       8    7   14         8    9   11         8    9   12  
       8   10    3         8   10    4 *       8   11    4  
       8   11    6         8   11    7         8   11   11  
       8   11   14         8   11   15         8   11   17  
       8   12    2 *       8   12    4 *       8   12    6 *
       8   12    7         8   12    9         8   12   10 *
       8   12   11         8   12   14 *       8   12   18 *
       8   13    1         8   13    2         8   13    5  
       8   13    7         8   13   14         8   13   17  
       8   14    2 *       8   14    3         8   14    5  
       8   14    6 *       8   14    7         8   14    8 *
       8   14    9         8   14   10 *       8   14   11  
       8   14   12 *       8   14   17         8   14   18 *
       8   15   11         8   15   12         8   15   18  
       8   16    0 *       8   16    1         8   16    3  
       8   16    6 *       8   16    9         8   16   11  
       8   16   12 *       8   16   16 *       8   16   18 *
       8   17    0         8   17    4         8   17    5  
       8   17    6         8   17    9         8   17   10  
       8   17   12         8   17   15         8   17   16  
       8   18    0 *       8   18    3         8   18    9  
       8   18   10 *       8   18   11         8   18   12 *
       8   18   13         8   18   16 *       8   18   17  
       9    0   12         9    0   13         9    0   18  
       9    1   11         9    1   15         9    1   18  
       9    3   14         9    3   15         9    3   16  
       9    4   10         9    4   13         9    5   13  
       9    5   18         9    6   10         9    6   13  
       9    6   14         9    6   16         9    7   17  
       9    8   11         9    8   15         9    8   18  
       9    9   14         9   10    6         9   10    7  
       9   10   15         9   10   16         9   13    8  
       9   13   17         9   13   18         9   14    4  
       9   14   13         9   16    2         9   16    4  
       9   16    7         9   16    8         9   16   11  
       9   16   13         9   16   16         9   16   17  
       9   17    0         9   17    7         9   17    9  
       9   17   16         9   18   18        10    0    8 *
      10    0   17        10    1    9        10    1   18  
      10    3    7        10    3   16        10    6    6 *
      10    6   15        10    7    4        10    7    9  
      10    7   13        10    7   18        10    8    9  
      10    8   18 *      10    9   17        10   10   18 *
      10   12    7        10   12   16 *      10   15    6  
      10   15   15        10   16    4 *      10   16   13  
      10   16   18 *      10   17   18        10   18    6 *
      10   18   15        10   18   18 *      11    1    5  
      11    1    7        11    1    9        11    1   14  
      11    1   16        11    1   18        11    2    5  
      11    2    6        11    2    9        11    2   14  
      11    2   15        11    2   18        11    4    8  
      11    4    9        11    4   17        11    4   18  
      11    5    9        11    5   18        11    8    9  
      11    8   18        11    9    8        11   10    5  
      11   10    7        11   10   14        11   10   16  
      11   10   18        11   11    5        11   11    6  
      11   11   14        11   11   15        11   11   18  
      11   13    8        11   13   17        11   13   18  
      11   14   18        11   17   18        11   18    3  
      11   18    4        11   18    6        11   18   12  
      11   18   13        11   18   15        12    0    7  
      12    0   16 *      12    1    5        12    1    7  
      12    1   14        12    1   16        12    2    7  
      12    2    9        12    2   16 *      12    2   18 *
      12    4    8 *      12    4   17        12    5    9  
      12    5   18        12    6    9        12    6   18 *
      12    8    0 *      12    8    4 *      12    8    6 *
      12    8   13        12    8   15        12    9    4  
      12    9   16        12   10    5        12   10    7  
      12   10   14 *      12   10   16 *      12   11    7  
      12   11   16        12   11   18        12   13    8  
      12   13   17        12   14   18 *      12   15   18  
      12   17    0        12   17    4        12   17    6  
      12   17    9        12   17   13        12   17   15  
      12   18    4 *      12   18   13        12   18   18 *
      13    0    5        13    0   14        13    1    7  
      13    1   16        13    2    6        13    2    7  
      13    2    8        13    2   15        13    2   16  
      13    2   17        13    3    9        13    3   18  
      13    4    5        13    4    8        13    4    9  
      13    4   14        13    4   17        13    4   18  
      13    6    0        13    6    4        13    6    7  
      13    6   13        13    6   16        13    7    9  
      13    7   18        13    8    2        13    8    3  
      13    8    4        13    8   11        13    8   12  
      13    8   13        13    9    4        13    9    6  
      13    9    7        13    9   14        13   10    7  
      13   10   16        13   11    6        13   11    7  
      13   11    8        13   11   15        13   11   16  
      13   11   17        13   12   18        13   13    5  
      13   13    8        13   13   14        13   13   17  
      13   13   18        13   15    0        13   15    4  
      13   15    7        13   15    9        13   15   13  
      13   15   16        13   16   18        13   17    2  
      13   17    3        13   17    4        13   17   11  
      13   17   12        13   17   13        13   18    2  
      13   18    3        13   18    4        13   18   11  
      13   18   12        13   18   13        13   18   18  
      14    2    7        14    2   16 *      14    3    5  
      14    3    9        14    3   14        14    3   18  
      14    5    6        14    5   15        14    6    1  
      14    6    2 *      14    6    6 *      14    6   10 *
      14    6   11        14    6   15        14    7    1  
      14    7    5        14    7    6        14    7    9  
      14    7   10        14    7   14        14    7   15  
      14    7   18        14    8    5        14    8   14 *
      14    9    2        14    9    8        14   11    7  
      14   11   16        14   12    5        14   12   14 *
      14   12   18 *      14   14    6 *      14   14   15  
      14   15    1        14   15    2        14   15    6  
      14   15   10        14   15   11        14   15   15  
      14   16    1        14   16    5        14   16    6 *
      14   16   10 *      14   16   14 *      14   16   15  
      14   16   18 *      14   17    5        14   17   14  
      14   18    8 *      14   18   17        15    1    9  
      15    1   18        15    2    5        15    2   14  
      15    3    8        15    3   17        15    4    4  
      15    4   13        15    5    4        15    5   13  
      15    6    1        15    6    3        15    6    4  
      15    6    9        15    6   10        15    6   12  
      15    6   13        15    6   18        15    7    0  
      15    7    8        15    7   17        15    8    1  
      15    8    3        15    8   10        15    8   12  
      15    9    8        15   10   18        15   11    5  
      15   11   14        15   12    8        15   12   17  
      15   13    4        15   13   13        15   14    4  
      15   14   13        15   15    1        15   15    3  
      15   15    4        15   15   10        15   15   12  
      15   15   13        15   15   18        15   16    0  
      15   16    8        15   16    9        15   16   17  
      15   17    1        15   17    3        15   17   10  
      15   17   12        15   18    3        15   18   12  
      16    0    5        16    0    6 *      16    0    9  
      16    0   14 *      16    0   15        16    0   18 *
      16    1    6        16    1    7        16    1   15  
      16    1   16        16    2    6 *      16    2    9  
      16    2   15        16    2   18 *      16    3    1  
      16    3    4        16    3    9        16    3   10  
      16    3   13        16    3   18        16    4    4 *
      16    4    8 *      16    4    9        16    4   13  
      16    4   17        16    4   18 *      16    5    5  
      16    5    7        16    5   14        16    5   16  
      16    6    0 *      16    6    5        16    6   14 *
      16    7    4        16    7    5        16    7    6  
      16    7   13        16    7   14        16    7   15  
      16    9    6        16    9    7        16    9    8  
      16    9   14        16    9   15        16    9   18  
      16   10    6 *      16   10    7        16   10   15  
      16   10   16 *      16   11    6        16   11   15  
      16   11   18        16   12    1        16   12    4 *
      16   12   10 *      16   12   13        16   12   18 *
      16   13    4        16   13    8        16   13   13  
      16   13   17        16   13   18        16   14    5  
      16   14    7        16   14   14 *      16   14   16 *
      16   15    0        16   15    5        16   15    9  
      16   15   14        16   16    4 *      16   16    5  
      16   16    6 *      16   16   13        16   16   14 *
      16   16   15        16   18    1        16   18    4 *
      16   18    6 *      16   18   10 *      16   18   13  
      16   18   15        17    0    7        17    0    9  
      17    0   16        17    0   18        17    2    4  
      17    2    6        17    2    9        17    2   13  
      17    2   15        17    2   18        17    3    1  
      17    3    3        17    3    4        17    3    7  
      17    3   10        17    3   12        17    3   13  
      17    3   16        17    4    0        17    4    4  
      17    4    5        17    4    6        17    4    9  
      17    4   13        17    4   14        17    4   15  
      17    4   18        17    5    0        17    5    1  
      17    5    2        17    5    4        17    5    9  
      17    5   10        17    5   11        17    5   13  
      17    5   18        17    6    0        17    6    2  
      17    6    3        17    6    5        17    6    6  
      17    6   11        17    6   12        17    6   14  
      17    6   15        17    7    1        17    7    7  
      17    7   10        17    7   16        17    8    0  
      17    8    2        17    8    4        17    8    5  
      17    8    6        17    8    7        17    8    8  
      17    8   11        17    8   13        17    8   14  
      17    8   15        17    8   16        17    8   17  
      17    9    0        17    9    2        17    9    3  
      17    9    4        17    9    5        17    9    6  
      17    9   16        17    9   18        17   11    4  
      17   11    6        17   11   13        17   11   15  
      17   11   18        17   12    1        17   12    3  
      17   12    4        17   12    7        17   12   10  
      17   12   12        17   12   13        17   12   16  
      17   13    0        17   13    4        17   13    5  
      17   13    6        17   13    9        17   13   13  
      17   13   14        17   13   15        17   13   18  
      17   14    0        17   14    1        17   14    2  
      17   14    4        17   14    9        17   14   10  
      17   14   11        17   14   13        17   14   18  
      17   15    0        17   15    2        17   15    3  
      17   15    5        17   15    6        17   15    9  
      17   15   11        17   15   12        17   15   14  
      17   15   15        17   16    1        17   16    7  
      17   16   10        17   16   16        17   17    0  
      17   17    2        17   17    4        17   17    5  
      17   17    6        17   17    7        17   17    8  
      17   17    9        17   17   11        17   17   13  
      17   17   14        17   17   15        17   17   16  
      17   17   17        17   18    0        17   18    1  
      17   18    3        17   18    4        17   18    5  
      17   18    6        17   18    7        17   18    9  
      17   18   10        17   18   12        17   18   13  
      17   18   14        17   18   15        17   18   16  
      18    1    5        18    1    7        18    1    8  
      18    1   14        18    1   16        18    1   17  
      18    2    7        18    2    8 *      18    2   16 *
      18    2   17        18    3    2        18    3    3  
      18    3    8        18    3   11        18    3   12  
      18    3   17        18    4    0 *      18    4    1  
      18    4    4 *      18    4    7        18    4    9  
      18    4   10 *      18    4   13        18    4   16 *
      18    4   18 *      18    6    6 *      18    6   15  
      18    7    0        18    7    2        18    7    4  
      18    7    9        18    7   11        18    7   13  
      18    7   18        18    8    2 *      18    8    3  
      18    8    8 *      18    8   11        18    8   12 *
      18    8   17        18    9    1        18    9    7  
      18   10    5        18   10    7        18   10    8 *
      18   10   14 *      18   10   16 *      18   10   17  
      18   11    7        18   11    8        18   11   16  
      18   11   17        18   12    2 *      18   12    3  
      18   12    8 *      18   12   11        18   12   12 *
      18   12   17        18   13    0        18   13    1  
      18   13    4        18   13    7        18   13    9  
      18   13   10        18   13   13        18   13   16  
      18   13   18        18   15    6        18   15   15  
      18   16    0 *      18   16    2 *      18   16    4 *
      18   16    9        18   16   11        18   16   13  
      18   16   18 *      18   17    2        18   17    3  
      18   17    8        18   17   11        18   17   12  
      18   17   17        18   18    2 *      18   18    4 *
      18   18    6 *      18   18    8 *      18   18    9  
      18   18   11        18   18   13        18   18   15  
      18   18   17  

    64 MAX ADDS FOR   5561 PALINDROME CLASSES, WITH   937 INTRANSIGENT CLASSES

PALINDROMES GROUPED AS TO THEIR ADD DEPTHS
    0-ADD GROUP ALSO INCLUDES INDIVIDUAL PALINDROMES INDICATED BY * ABOVE

      ADDS  CLASSES   ADDS  CLASSES   ADDS  CLASSES   ADDS  CLASSES
         0     8         1   903         2  1087         3   536
         4   622         5   410         6   374         7   267
         8   217         9   174        10   127        11   127
        12    96        13    63        14    53        15    72
        16    48        17    44        18    41        19    28
        20    23        21    23        22    28        23    16
        24     5        25    23        26    18        27    28
        28    14        29     8        30     6        31     5
        32     6        33     3        34     4        35     5
        36     3        37     5        38     1        39     2
        45     4        46     6        47     1        50     4
        51     6        52     2        53     1        57     4
        58     2        59     1        60     1        63     4
        64     2